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Abstract

For the natural vibration of rods of pre-twisted rectangular cross-sections with its centerline spatially
curved and twisted arbitrarily, a system of non-dimensional ordinary differential equations is obtained in
three translation displacements and three rotational angles of the rod. The eigenvalue problem is solved for
the natural frequencies of various pre-twisted angles of the rectangular cross-section area, aspect ratios,
slenderness ratio, end conditions and functions of varying cross-section area along the rods by using a
numerical method of Runge–Kutta integration. The eigenvalues are determined by the vanishing of a rank-
six determinant whose column vectors are obtained at the end of six independent numerical integrations.
The differential equations of the adjoint operator system for the eigenvalue problem with its associated
boundary conditions are also derived and solved for the eigenvalues to check with that of the vibration
system. It is found that the effect of increasing pre-twisted angle of the rod is that the lowest natural
frequency of an arbitrary curved rod will asymptotically tend to be a constant, in spite of slenderness ratio,
aspect ratio of the rectangular cross-section, E=G ratio, types of end conditions, or the functions of the
cross-section area along the rod.
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Nomenclature

ASPR aspect ratio of the rectangular rod
a radius of cylindrical surface for a helix
b pitch of helix divided by 2p
A3;A30 cross-section area of rod
Ci independent coefficients for ~Ci;

i ¼ 1; . . . ; 6
d diameter of a circular rod with its cross-

section area equal to that of the rectan-
gular rod

(~e1;~e2;~e3) base unit vectors in principal normal,
bi-normal and tangential directions

E Young’s modulus
G shear modulus
I11; I22; I33; I12; I10; I20 dimensional moment of

inertia
I1;I2;I12;I3 non-dimensional moments of inertia,

(dimensional I)/A3‘
2

~k; ðk1; k2; k3Þ bending or twist rotational defor-
mation

K ;G non-dimensional curvatures
KE kinetic energy of rod
L lagrangian of a rod, L ¼ KE� PE
‘ length of the rectangular rod
~m internal moment in the rod cross section
ðM1;M2;M3Þ components of amplitude of mo-

ment ~m for small oscillation
N the matrix of the system of linear

differential equations
O1 the first lowest frequency of natural

vibration
ðO1ÞE:B: the first lowest natural frequency for the

straight Euler–Bernoulli beam theory

PE potential energy of a rod
~q internal force in the rod cross-section
ðQ1;Q2;Q3Þ components of amplitude of shear

force ~q for small oscillation
S; s non-dimensional and dimensional mea-

surement along arc length
T non-dimensional torsion
t̄ a variable of parametric expression for

the curve of rod geometry
~u; ðu1; u2; u3Þ displacement vector of rod element
(U1;U2;U3Þ components of amplitude of dis-

placement vector ~u for small oscillation
in x1;x2; and x3 directions

ðV 1;V 2; . . . ;V12Þ components of amplitude of
variables in adjoint operator system

~x; ðx1; x2;x3Þ local reference frame
b uniform pre-twist angle per unit arc

length of the rod
~� stretching and shear deformation of rod

element
~y rotation vector of rod element
ðY1;Y2;Y3Þ components of amplitude of rota-

tion vector ~y for small oscillation
k; g dimensional curvatures,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ g2

p
¼

a=ða2 þ b2Þ

r density
t dimensional torsion, b=ða2 þ b2Þ
~C variable vector of the system of linear

differential equations
O;o non-dimensional and dimensional angu-

lar frequency, O2 ¼ ðr‘2=EÞo2

ðO1ÞE:B: first lowest frequency O for the straight
Euler–Bernoulli beam
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1. Introduction

Spatially curved and twisted rods find applications in many engineering and architectural
systems. Tabarrok et al. developed a finite element formulation for the free vibration of this type
of rods [1], and also a computation method for the dynamics of these rods [2]. In the early days there
has been a number works on the dynamics of planar rods [3–7], and on the pre-twisted, curved and
helical rods [8–13]. In the related work on buckling of helical springs under compression and, or
torsion, Yildirim [14] verified that the rod-model approximation is appropriate for springs with large
numbers of turns. Recently, Tobarrok and Xiong [15] derived a finite element formulation for the
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vibration and buckling of curved and twisted rods under load. Also, Cleghorn [16] studied the
natural frequencies of helical spring subject to a static axial compression load by using transfer
matrix method. In the present study, simple finite steps of integration of numerical calculation for a
system of first-order ordinary differential equations and the boundary conditions are developed to
obtain the nature frequencies of arbitrarily spatially curved rectangular pre-twisted rod, with its
centerline being a space curve featured by varying space-curve curvature and torsion.
2. Formulation

The local coordinate reference frame x1;x2 and x3 (principal normal ‘~e1’, bi-normal ‘~e2’ and tangent
‘~e3’ to the general helix) is used in the formulation of the differential equations.For the system as
illustrated in Fig. 1, the arc length of the rod along its centerline is denoted by s, and k; g are the
curvatures, t is the torsion of the centerline. At each point of the centerline of the rod, one must define
a local ortho-normal system of vectors in the Serret–Frenet formulas as in Ref. [17], they are

d~e1
ds
¼ t~e2 � k~e3;

d~e2
ds
¼ �t~e1 þ g~e3;

d~e3
ds
¼ k~e1 � g~e2: ð1Þ

Let a rod of finite length subject to small deformation in stretching, shear and bending. The change
in the rotation vector of a sliced cross-section element may be expressed as

~k ¼
q~y
qs

; (2a)

where ~k denotes the change in curvature–twist along the arc length s. For the stretching and shear
deformations ~�; one can express the change in the displacement vector ~u of a sliced cross-section
element as

~� ¼
q u
 

qs
þ~e3 �~y; (2b)

where ~� denotes the stretching and shear deformation. These two equations may be viewed as
generalization of the Timoshenko beam kinematics to curved rods. For linearly elastic behavior,~� and
~k may be written in the constitutive relations as

~q ¼

GA3 0 0

0 GA3 0

0 0 EA3

2
64

3
75

�1

�2

�3

2
64

3
75; (3)
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Fig. 1. (a) Space geometry and (b) curvature and torsion of the rod, for G ¼ 0:
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~m ¼

EI11 EI12 0

EI21 EI22 0

0 0 GI33

2
64

3
75

k1

k2

k3

2
64

3
75; (4a)

where~q and ~m are the internal force and moment vectors in the rod. A3 denotes the cross-section area
of the rod. E and G denote Young’s modulus and shear modulus, respectively. I11; I12; I21; and I22 are
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the element of the inertia tensor of area moment about the axes ~x1 and ~x2; while I33 denotes the
torsion constant. If the pre-twisted angle per unit length of the rod is b along the arc length s, and I10
and I20 denote the principle moment of inertia. Then, we have

I11 ¼ �I10 cos
2ðbsÞ þ I20 sin

2
ðbsÞ;

I22 ¼ I10 sin
2
ðbsÞ þ I20 cos

2ðbsÞ;

I12 ¼ �ðI10 � I20Þ sinðbsÞ cosðbsÞ;

I21 ¼ I12: (4b)

Under prescribed configuration of the rod, the potential energy PE and the kinetic energy KE of the
rod may be expressed as

PE ¼

Z ‘

0

1

2
ð~� �~qþ ~k � ~mÞds (5)

KE ¼

Z ‘

0

1

2
rA3

quj

qt

quj

qt
þ rI ij

qyi

qt

qyj

qt


 �
ds: (6)

In the case of small displacements and rotations about equilibrium, the Lagrangian can be obtained

L ¼ KE� PE: (7)

A direct application of Hamilton’s principle for the curved rod

d
Z t

0

Ldt ¼ d
Z l

0

ds

Z t

0

dt L u1; u2; u3; y1; y2; y3;
qu1

qs
;
qu2

qs
;
qu3

qs
;



qy1
qs

;
qy2
qs

;
qy3
qs

;
qu1

qt
;
qu2

qt
;
qu3

qt
;
qy1
qt

;
qy2
qt

;
qy3
qt

; s; t

�
¼ 0: ð8Þ

This provides the Euler–Lagrange equation [18].

q
qt

qL

qðqui=qtÞ
þ

q
qs

qL

qðqui=qsÞ
�

qL

qui

¼ 0; i ¼ 1; 2; 3; (9)

q
qt

qL

qðqyi=qtÞ
þ

q
qs

qL

qðqyi=qsÞ
�

qL

qyi

¼ 0; i ¼ 1; 2; 3: (10)

Written in detail, Eqs. (1), (2), (9) and (10) are as follows:

q
qt

rA3
qu1

qt


 �
�

qq1
qs
þ tq2 � kq3 ¼ 0;

q
qt

rA3
qu2

qt


 �
�

qq2
qs
� tq1 þ gq3 ¼ 0;

q
qt

rA3
qu3

qt


 �
�

qq3
qs
þ kq1 � gq2 ¼ 0;
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q
qt

rI11
qy1
qt


 �
þ r

q
qt

I12
qy2
qt


 �
�

qm1

qs
þ q2 þ tm2 � km3 ¼ 0;

q
qt

rI22
qy2
qt


 �
þ r

q
qt

I12
qy1
qt


 �
�

qm2

qs
� q1 þ tm1 þ gm3 ¼ 0;

q
qt

rI33
qy3
qt


 �
�

qm3

qs
þ km1 � gm2 ¼ 0;

qu1

qs
� tu2 þ ku3 � y2 ¼

q1
GA3

;

qu2

qs
þ tu1 � gu3 þ y1 ¼

q2
GA3

;

qu3

qs
� ku1 þ gu2 ¼

q3
EA3

;

qy1
qs
� ty2 þ ky3 þ

I12

I11

qy2
qs
þ ty1 � gy3


 �
¼

m1

EI11
;

I12

I22

qy1
qs
� ty2 þ ky3


 �
þ

qy2
qs
þ ty1 � gy3 ¼

m2

EI22
;

qy3
qs
� ky1 þ gy2 ¼

m3

GI33
: ð11Þ

For static situation, qð�Þ=qt ¼ 0; these 12 equations of Eq. (11) can be reduced to static form and
are agreed with those static differential equations obtained by Motterhead [8]. As one attempting to
look for normal mode solutions in which all the displacements and rotations oscillate with the same
frequency o; thus one may assume

qi ¼ Q̂iðsÞe
iot;

mi ¼ M̂iðsÞe
iot;

ui ¼ Û iðsÞe
iot;

yi ¼ ŶiðsÞe
iot: ð12Þ

To reach a system of non-dimensional first-order differential equations one may introduce

Q
_

i ¼ EA3Q
	
i ; M

_

i ¼ EA3‘M
	
i ; U

_

i ¼ ‘U	i ; Y
_

i ¼ Y	i ; A3 ¼ A30A
	ðsÞ;

I ii ¼ A3‘
2I	i ; I ij ¼ A3‘

2I	ij; o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E=r‘2

q
O	;

s ¼ ‘s	; k ¼ ð1=‘ÞK	; t ¼ ð1=‘ÞT	; g ¼ ð1=‘ÞG	: ð13Þ
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By removing all the 	s for simplicity, the non-dimensional equations are

dQ1

ds
� TQ2 þ KQ3 þ O2U1 ¼ 0;

dQ2

ds
þ TQ1 � GQ3 þ O2U2 ¼ 0;

dQ3

ds
� KQ1 þ GQ2 þ O2U3 ¼ 0;

dM1

ds
� TM2 þ KM3 �Q2 þ O2ðI1Y1 þ I12Y2Þ ¼ 0;

dM2

ds
þ TM1 � GM3 þQ1 þ O2ðI2Y2 þ I12Y1Þ ¼ 0;

dM3

ds
� KM1 þ GM2 þ O2I3Y3 ¼ 0;

dU1

ds
� TU2 þ KU3 �Y2 ¼ Q1

E

G


 �
;

dU2

ds
þ TU1 þY1 � GU3 ¼ Q2

E

G


 �
;

dU3

ds
� KU1 þ GU2 ¼ Q3;

dY1

ds
� TY2 þ KY3 þ

I12

I1

dY2

ds
þ TY1 � GY3


 �
¼

M1

I1
;

I12

I2

dY1

ds
� TY2 þ KY3


 �
þ
dY2

ds
þ TY1 � GY3 ¼

M2

I2
;

dY3

ds
� KY1 þ GY2 ¼

M3

I3

E

G


 �
: ð14Þ

The end conditions commonly used in Eqs. (14) may be fixed, free, pinned or sliding-end
conditions at s ¼ 0 and 1. For these variety end conditions, the following mathematical
conditions should apply respectively, U1 ¼ U2 ¼ U3 ¼ Y1 ¼ Y2 ¼ Y3 ¼ 0; for fixed end
condition, Q1 ¼ Q2 ¼ Q3 ¼M1 ¼M2 ¼M3 ¼ 0; for pinned end condition, M1 ¼M2 ¼M3 ¼

U1 ¼ U2 ¼ U3 ¼ 0; for free end condition, and Q1 ¼ Q2 ¼ Q3 ¼ Y1 ¼ Y2 ¼ Y3 ¼ 0; for sliding
end condition.
3. Method of solution

A fourth-order Runge–Kutta algorithm [19] of step-by-step integration for a system of first-
order ordinary differential with initial conditions is employed in the computation. It is convenient
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to rewrite Eq. (14) in the form

d~C
ds
¼ N~C; (15)

where ~C ¼ ½Q1;Q2;Q3;M1;M2;M3;U1;U2;U3;Y1;Y2;Y3�
T: To illustrate the method,

the fixed–free end conditions of a cantilever rod are considered. Let ~C1; ~C2; ~C3; ~C4; ~C5 and ~C6

be the six independent solutions obtained through the integration of Eq. (15) satisfying
the end conditions at s ¼ 0;U1 ¼ U2 ¼ U3 ¼ Y1 ¼ Y2 ¼ Y3 ¼ 0; therefore the six corres-
ponding initial conditions for the six independent solutions of the system of differential equations
are,, ~C1ð0Þ¼½1 0 0 0 0 0 0 0 0 0 0 0�

T; ~C2ð0Þ ¼ ½0 1 0 0 0 0 0 0 0 0 0 0�
T; . . .and ~C6ð0Þ¼

½0 0 0 0 0 1 0 0 0 0 0 0�T respectively. Finally, the general solution of Eq. (15) satisfies
the boundary condition at s ¼ 0; must be the linear combination of the six independent
solutions.

~CðsÞ ¼ C1
~C1ðsÞ þ C2

~C2ðsÞ þ C3
~C3ðsÞ þ C4

~C4ðsÞ þ C5
~C5ðsÞ þ C6

~C6ðsÞ: (16)

Imposing the condition at the free end, Q1 ¼ Q2 ¼ Q3 ¼M1 ¼M2 ¼M3 ¼ 0 at s ¼ 1; one must
demand that the six components of ~Cð1Þ to be zero, that is,

Cið1Þ ¼ 0; i ¼ 1; 2; . . . ; 6:

Hence the function of O for eigenvalue relation is

FðOÞ ¼

C11ð1Þ C21ð1Þ � � � C61ð1Þ

C12ð1Þ C22ð1Þ � � � C62ð1Þ

� � � � � � � � � � � �

C16ð1Þ C26ð1Þ � � � C66ð1Þ




¼ 0; (17)

where Cijð1Þ is the jth component of ~Cið1Þ:
For fixed values of G; E and G, and variable parameters K ;T ; I1; I2; I12; I3; and A3 along arc

length, the eigenvalue can be found by sequentially searching for the zeros of the characteristic
equation (17), F ðOÞ ¼ 0:
4. Adjoint operator system

The formal adjoint operator L	ð~FÞ [20] associated with the operator of differential equation
(15) Lð~CÞ and the boundary conditions can be written asZ 1

0

~F
T

Lð~CÞds ¼ ½. . .�j10 þ

Z 1

0

~C
T

L	ð~FÞds; (18)
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where ~F
T
¼ ½V1;V2;V3; . . . ;V12�; ~C

T
¼ ½Q1;Q2;Q3;M1;M2;M3;U1; . . . ;Y3� and the system of

differential equations for adjoint operator L	ð~FÞ are as follows:

dV1

ds
¼ TV2 � KV3 þ V5 �

E

G


 �
V7;

dV2

ds
¼ �TV1 þ GV3 � V4 �

E

G


 �
V8;

dV3

ds
¼ KV 1 � GV2 � V9;

dV4

ds
¼ TV5 � KV6 �

V10

I1


 �
;

dV5

ds
¼ �TV4 þ GV6 �

V11

I2


 �
;

dV6

ds
¼ KV 4 � GV5 �

V12

I3


 �
E

G


 �
;

dV7

ds
¼ �KV 9 þ TV8 þ O2V1;

dV8

ds
¼ GV9 � TV 7 þ O2V2;

dV9

ds
¼ �GV8 þ KV7 þ O2V3;

dV10

ds
¼

�KV12 þ TV 11 þ V8 þ O2ðI1V4 þ I12V5Þ þ
I12

I1


 �
TV10 � V11

d

ds

I12

I2


 �
 �

�
I12

I2


 �
GV12 � TV10 � V7 þ O2ðI2V5 þ I12V4Þ �

I12

I2


 �
TV 11 � V10

d

ds

I12

I1


 �
 �
0
BBBB@

1
CCCCA
,

1�
I212
I2I1


 �
;

dV11

ds
¼ GV12 � TV10 � V7 þ O2ðI2V5 þ I12V4Þ �

I12

I2


 �
TV 11 � V10

d

ds

I12

I1


 �
�

I12

I1


 �
dV10

ds
;

dV12

ds
¼ �GV11 þ KV10 þ O2I3V6 � I12

G
I1


 �
V10 �

K

I2


 �
V11


 �
: ð19Þ

For instance, the boundary condition for ~VðsÞ associated with a rod of ends fixed will be V1ðsÞ ¼

V2ðsÞ ¼ V3ðsÞ ¼ V4ðsÞ ¼ V5ðsÞ ¼ V6ðsÞ ¼ 0; at s ¼ 0 and 1. Both the differential system of the rod
vibration and its adjoint operator system are calculated to check the frequency in each other.
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5. Results and discussions

In arriving the non-dimensional Eqs. (14), the dimension in angular velocity is in a formffiffiffiffiffiffiffiffiffiffiffiffiffi
E=r‘2

q
rather than

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE=r‘2ÞðI1=A3‘

2Þ

q
as in the Euler–Bernoulli beam theory. The choice of the

dimensional reference in present work comes from the fact that there are involved four distinct
moments of inertia I1; I2; I12; and I3 in the problem instead of only one moment of inertia I1 with
respect to x1 axes to be involved. The characteristic dimension for curvature and torsion is
introduced by 1=‘: It can be interpreted that the physical quantity such as curvature can be
considered as an accumulating quantity along the arc length.
For common end conditions of the rods there are two physical properties out of four in

~Q; ~M; ~U ; and ~Y; to be set zero at s ¼ 0 and 1. However, there are two combinations of the
mathematical conditions, ~Q ¼ ~U ¼ 0 and ~M ¼ ~Y ¼ 0; not available due to lack of possible
physical application. All computations are made for two systems of differential equations; one is
the differential equation (15) and the related boundary conditions, while the other one is the
adjoint operator system of the differential equation (18) and its corresponding adjoint boundary
conditions. Mathematically, identical characteristic equations must obtain for these two systems.
The eigenvalues are checked in each other to fulfill the criterion for required computation
accuracy up to six decimal points.
First of all, Fig. 1(a) shows the geometry of an arbitrary space curve of the rod, which has an

parametrical expression as x1 ¼ t̄2 þ sinðt̄Þ; x2 ¼ t̄þ t̄2 and x3 ¼ t̄þ expðt̄Þ; and its curvature and
torsion along arc length s obtained through analytical differentiation are depicted in Fig. 1(b). In
Fig. 2, the lowest four natural frequencies are plotted versus the pre-twisted angle of the
Pre-twisted Angle

Ω
/(

Ω
1)

E
.B

.

0 25 50 75
0

1

2

3

4

5

6

7

8

Fig. 2. The lowest four natural frequencies versus the varying pre-twisted angles for a cantilever rectangular rod of

ASPR ¼ 2; E=G ¼ 2:6; and d=‘ ¼ 0:01:
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rectangular cross-section area of the rod. The first frequency increases and the second frequency
decreases monotonically against the pre-twisted angle, respectively, and meet each other
asymptotically, while the third frequency increases and the fourth frequency decreases, they
look like to be met and to be crossed each other at the pre-twist angle around 2.35. The lowest
frequencies for three types of end condition of the rod, fixed–pinned, fixed–free, and fixed–fixed,
versus the pre-twisted angles are shown in Fig. 3. For the fixed–free end condition, the lowest
frequency varies with the pre-twisted angle smoothly, while for the end conditions fixed–pinned
and fixed–free, the lowest frequency varies with the pre-twisted angle at several discontinuous
slopes. As the pre-twisted angle becomes large, the effect of boundary conditions disappears. The
frequencies converge to a same value. It is shown in Fig. 4 that if the cross section area of the rod
is kept unchanged, the pre-twisted angle will not affect the natural frequency at aspect ratio equal
to one, but the effect of pre-twisted angle will become to be saturated at a pre-twisted angle
around 20 for aspect ratios 2, 4, and 8. The lowest natural frequency for two slenderness ratios of
a rod is shown in Fig. 5. As the pre-twisted angle is greater than 20, there is only slight variations
on the value of the lowest frequency. It takes note in Figs. 2, 3, and 5, that big changes in the
frequencies of the rod at smallpre-twisted angles less than 2 are observed in the result. The
variation of the lowest natural frequency for three types of function of the cross section area along
the rod is depicted in Fig. 6. Suppose one reshapes a uniform rectangular cross-section rod of
aspect ratio 4 in such a way that the cross section area varies along the arc length as a linear or
quadratic function, the natural frequency is raised about 1

3
for large pre-twisted angles. The

increase of the power in the non-uniformity function of cross-section area will push the natural
frequencies up to a higher value. In Fig. 7, it is presented the effect of E=G ratio on the lowest
frequency of the rod with pre-twisted angle varying. It is found that, as the pretwisted angle is less
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E
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Fig. 3. The lowest natural frequency varying versus the pre-twisted angles for a rectangular rod of aspect ratio 4,

E=G ¼ 2:6; and d=‘ ¼ 0:01 with three types of end conditions, fixed–pinned, fixed–free, and fixed–fixed.
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Fig. 4. The lowest natural frequency varying versus the pre-twisted angles for a cantilever rectangular rod of E=G ¼

2:6; and d=‘ ¼ 0:01 with four aspect ratios, ASPR = 1, 1.414, 2, and 2.828, the cross-section area remained constant.
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Fig. 5. The lowest natural frequency varying versus the pre-twisted angles for a both-end-clamped rectangular rod of

E=G ¼ 2:6; and aspect ratio ¼ 4 with two slenderness aspect ratios, d=‘ ¼ 0:01 and d=‘ ¼ 0:2:
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than 10, the lowest natural frequency for these two E=G ratios are not distinguishable. As the pre-
twisted angle is greater than 20, a rod with less E=G ratio will give a higher natural frequency as
expected. This agrees with the case if we consider no shear deformation, that is as G tends to
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Fig. 6. The lowest natural frequency varying versus the pre-twisted angles for a cantilever rectangular rod of E=G ¼

2:6; d=‘ ¼ 0:2 and aspect ratio ¼ 4 with three variable cross-section areas, the total volume remained constant.
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Fig. 7. The lowest natural frequency varying versus the pre-twisted angles for a cantilever rectangular rod of

slenderness ratio d=‘ ¼ 0:2 and aspect ratio ASPR =2 with two E=G ratios equal to 2.0 and 3.5.
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infinity, and there will be a higher natural frequency. Finally, the cross-section area of ASPR ¼
1:414 is cut from the x1 normal axes, and pulled apart for a gap distance but linked by a rib of
negligible mass. The lowest frequency varies along with the increase of pre-twisted angle is shown
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Fig. 8. The lowest natural frequency varying versus the pre-twisted angles for a both-end-fixed uniform rectangular rod

of slenderness ratio d=‘ ¼ 0:01; aspect ratio ASPR = 1.414 and E=G ratio equal to 2.6 with five gap distances.
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in Fig. 8. It is observed that the lowest frequencies for various distance gaps will converge, as the
pre-twisted angle tends to be large. Also, for a prescribed pre-twisted angle there is always a
higher lowest frequency for a rod with higher gap distance.
6. Conclusion

The nature frequency of vibration for arbitrarily specified spatially curved rectangular rod, with
the cross section area pre-twisted along the centerline of the rod, was studied together with
the associated adjoint system by using a method of Runge–Kutta numerical integration. The
constantly increased pre-twisted angle of a rod will finally make the lowest natural frequency to be
saturated, in spite of the variations of slenderness ratio, aspect ratio of the rectangular
cross-section, E=G ratio, types of end conditions, or the functions of the cross-section area along
the rod.
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